RUNX3, EGR1 and SOX9B Form a Regulatory Cascade Required to Modulate BMP-Signaling during Cranial Cartilage Development in Zebrafish
نویسندگان
چکیده
The cartilaginous elements forming the pharyngeal arches of the zebrafish derive from cranial neural crest cells. Their proper differentiation and patterning are regulated by reciprocal interactions between neural crest cells and surrounding endodermal, ectodermal and mesodermal tissues. In this study, we show that the endodermal factors Runx3 and Sox9b form a regulatory cascade with Egr1 resulting in transcriptional repression of the fsta gene, encoding a BMP antagonist, in pharyngeal endoderm. Using a transgenic line expressing a dominant negative BMP receptor or a specific BMP inhibitor (dorsomorphin), we show that BMP signaling is indeed required around 30 hpf in the neural crest cells to allow cell differentiation and proper pharyngeal cartilage formation. Runx3, Egr1, Sox9b and BMP signaling are required for expression of runx2b, one of the key regulator of cranial cartilage maturation and bone formation. Finally, we show that egr1 depletion leads to increased expression of fsta and inhibition of BMP signaling in the pharyngeal region. In conclusion, we show that the successive induction of the transcription factors Runx3, Egr1 and Sox9b constitutes a regulatory cascade that controls expression of Follistatin A in pharyngeal endoderm, the latter modulating BMP signaling in developing cranial cartilage in zebrafish.
منابع مشابه
In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper Sox9b Expression
Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most-reduced transcripts in severa...
متن کاملPapp-a2 modulates development of cranial cartilage and angiogenesis in zebrafish embryos.
Pregnancy-associated plasma protein A2 (PAPP-A2, also known as pappalysin-2) is a large metalloproteinase that is known to be required for normal postnatal growth and bone development in mice. We here report the detection of zebrafish papp-a2 mRNA in the chordamesoderm, notochord and lower jaw of zebrafish (Danio rerio) embryos, and that papp-a2-knockdown embryos display broadened axial mesoder...
متن کاملWdr68 Mediates Dorsal and Ventral Patterning Events for Craniofacial Development
Birth defects are among the leading causes of infant mortality and contribute substantially to illness and long-term disability. Defects in Bone Morphogenetic Protein (BMP) signaling are associated with cleft lip/palate. Many craniofacial syndromes are caused by defects in signaling pathways that pattern the cranial neural crest cells (CNCCs) along the dorsal-ventral axis. For example, auriculo...
متن کاملDynamics of BMP signaling and distribution during zebrafish dorsal-ventral patterning
During vertebrate embryogenesis, dorsal-ventral patterning is controlled by the BMP/Chordin activator/inhibitor system. BMP induces ventral fates, whereas Chordin inhibits BMP signaling on the dorsal side. Several theories can explain how the distributions of BMP and Chordin are regulated to achieve patterning, but the assumptions regarding activator/inhibitor diffusion and stability differ bet...
متن کاملZebrafish Adar2 Edits the Q/R Site of AMPA Receptor Subunit gria2α Transcript to Ensure Normal Development of Nervous System and Cranial Neural Crest Cells
BACKGROUND Adar2 deaminates selective adenosines to inosines (A-to-I RNA editing) in the double-stranded region of nuclear transcripts. Although the functions of mouse Adar2 and its biologically most important substrate gria2, encoding the GluA2 subunit of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor, have been extensively studied, the substrates and functions of zebraf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012